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Just an algebra of tableaux

We present a cluster structure on semi standard Young tableaux. Based on
arXiv:2106.0/101 with Roger Bai and Joel Kamnitzer.

CLAREMONT MCKENNA COLLEGE


https://arxiv.org/pdf/2106.07101.pdf
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is contained in the geometric fusion X (7') xpx X (7")...
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...forces the equations

2A7,A5s + 3AT38” 4+ Afy Agy + Ajp Ajs + 24135, Afys® — Ajy Agys — Ajp Ajys — 247, Az,
Af, Al Agys® + Ay AT ASys® — (AT, Asy)? + 241, A1, As3 ASy — (Al A3;)% + 641, A3 Asgs + 441, A13 A3,
A%zA%3(A§3)232 - (A%2A53)2A33 + 2A%2A%2A%3(Ag3)2 N (A%2)2(A§3)3 . 2A%2A%3(A%3)23
+ 441, A3 Ay Asys — Aj3 Af3 Aggs® — 3A1, A3 (Ags)® + 4A1, Aj3 Agz Ass,
(A1;)°(Ag3)2 455 — 241,453 ( AT, A355)° + ATy (A1) (A33)° + 2435 (A1,A53)%s + 2475(A1, 45;)%s
+3A1,(AT3)% Agzs® + Aj3 (Al Azs)® + 441, ATy AS5(Azy)® — 6A1, ATy Aj3 Asy Ag,
+ 4( A1) A3 Ags ASy — 4A1, A3 AT Aggs — 4A75(Af3)  Asy + A3 (A1 455)°

to vanish. Setting s = 0 results in a union of three irreducible components
which we record as the combinatorial fusion
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The slice and the orbit

O C M (C) denotes the nilpotent (adjoint) orbit of matrices A having
Jordan type A or rkA¢ = N — #boxes in first ¢ columns of \ for all c.

T, denotes the affine space of u X p block matrices Jy , + X where X isa
block matrix with possibly nonzero entries in the first min(,uz-, ,uj) columns of

the last row of each u; X p; block.

E.g. If u = (3,2) then T, looks like

___________________________________________________________________________________________________
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Generalized orbital varieties

Given A € My (C) N n we denote by A|<CP the restriction of A to the

subspace spanned by the first p standard basis vectors of C¥ and identify it
with the p X p upper-left submatrix of A.

Let p < A N.GivenT € YT(A), have 7“{1 € YT (A(2)),() and

X(r):={AecT,Nn: A}@m(i)\ c 0*) foreachi =1,...,m}
Denote by X(’T) the top-dim irreducible component of its closure.

—A
Theorem. { X (7)},cyr()), areirreducible components of O° N T, N n.
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Two-point deformation of 7, N1

Uy " is the family of pairs (A, s) € T}, X A such that A is weakly block

upper-triangular with diagonal equal to the companion matrices of the
polynomials t*i (t — s)H

"0 1 0,0 0 |0 -
0 0 1 0 0 0
(1,1,0),(2,1,1) e |0 =87 28 A A Ay
E.g. Uo,s looks like 00 00 10
0 0 0 0 s Ay
_ 0 0 0 0 0 | s _
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: : —A
Two-point deformation of O

For s # 0 the (adjoint) orbit of matrices conjugate to Jy x» @ J, \» or

( rkA¢ = N — #boxes in first ¢ columns of A/,
08’;)‘” .= <{ A e My(C):7k(A —s)° = N — #boxes in first ¢ columns of A", }
forallec >0
\ /
: LA : :
Fact. There exists a flat family O, ,  — A whose fibre over s € A is reduced

_A,,A” _A
and givenby Oy, ifs # 0and O ifs = 0.
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Two-point deformation of X (7)
For s # 0 and a pair of tableaux 7' € YT'(X') ,,, 7" € YT'(N"),» define

X (', " )03—{AEU0I W A‘(C\u ‘EOO())‘”()forizl,...,m}

S

and

X(r', "o = {(4,8) € My x A% A€ X(7',7")o,s |

and X (7', 7" )0 a to be the closure of its top-dim component in M x A.
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Geometric fusion

Define the fusion of generalized orbital varieties as the scheme-theoretic
intersection

X(T’,T")(),A N My x {0} =: X(T’,T")0,0
in My x A.
Fact. X (7', 7"")¢.0 is contained in 0" n T, Nn.

The intersection multiplicities 4 (X (7), X (7', 7" )0,0) are the structure
constants of our algebra of tableaux.
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What is this mystery algebra?

In type A the geometric Satake correspondence (%) is about tableaux.
UyT() 57 Jx () 2225 v

| | s

N" B(oc0) < C|N]

Fact. b(7) € C|N| coming from the generalized orbital varieties form a

perfect basis with structure constants ¢(X (7), X (7', 7"")0.0). We call this
the MV basis.
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Remarks

e commutativity of geometric fusion

e combinatorial fusion often symmetrized RSK
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Cluster algebras

C|N] is acluster algebra: by mutating from an initial seed ({z1,...,%,}, B)
of r = m(m — 1) /2 cluster variables z; € C|N|, meaning mutable x; are
replaced by a:;‘ according to the exchange relation

T;T; = T4 + T

with 1+ denoting monomialsin {x; : j # ¢} determined by B, we obtain the
cluster variables.

Each mutation gives a new cluster. The cluster monomials are products of
cluster variables that are supported on a single cluster.

12 of 23



Motivating conjecture

(C[N] has three interesting (biperfect) bases: the MV basis, the dual canonical
basis, and the dual semicanonical basis. They disagree at a point which is not a
cluster monomial.

Conjecture. The cluster monomials are contained in the MV basis.

Given an initial seed of "MV cycles" if we can find (for each 2) an MV cycle

X (7) suchthat X (7;) * X (7) = X (7)) U X (7_) then we can conclude
that b(7,) = x and (since all cluster variables are created via exchange)
deduce that the conjecture is true.
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Thank you for listening



Intersection Multiplicity

Example 2.6.5. Let D be an effective Cartier divisor on a scheme X, i the
inclusion of D in X. Let Y be a closed subscheme of X. Assume that Y 1is
purely n-dimensional and D ﬂ Y has dimension n — 1. Let V,,..., V., be the
(reduced) irreducible components of D ﬂ Y. Let 4; be the local ring of Y
along V;, and let a; be a local equation for D in 4;. Then

r

*[Y]=D-[Y]= 2 e4(ai, 4)[V]

i=1

where ey, (a;, A;) 1s the multiplicity defined in Appendix A.2. More generally, if
one assumes only that dim Y =n»n and dim D ﬂ Y=n—1,and V,,..., V, are
the components of D ()Y of dimension n— 1, then the right side of this
equation gives a formula for *([Y],), where [Y], is the n-dimensional
component of the cycle of Y. (These formulas follow from LemmaA.2.7.)
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3 mutable variables per cluster for a total of 9, plus 3 frozen

X12X23 — X13




Monoidal categorification

For an R(3)-module M and an R(vy)-module N, we define the convolution product

M o N by

MoN=R(B+7)eB,7) & (M®N).
R(8)®R(7)

Definition 2.2.5. For simple R-modules M and N, we denote by MV N the head
of M o N and by M A N the socle of M o N.

Definition 3.1.1. For non-zero M, N € R-gmod, we denote by A(M,N) the ho-

mogeneous degree of the R-matrix VN



Monoidal categorification

Corollary 4.1.2. Let M and N be simple modules. We assume that one of them
is real. Assume that M and N do not commute, Then we have the equality in the
Grothendieck group K(R-gmod)

[MoN]=[MVN]+[MAN]+ [S]

with simple modules Sy. Moreover we have the following:
(i) If M is real, then we have A(M,M A N) < A(M,N), A(MV N, M) <

-
i

A(N, M) and A(M, Sg) < A(M, N), A(Sy, M) < AN, M).

-
4

(ii) If N s real, then we have A(IN, MV N) < AN, M), A(M A N,N) <

-
y

A(M, N) and A(N, Sy) < AN, M), A(Sy, N) < A(M, N).

-
A



Flatness
Rank Varieties of Matrices

DAVID EISENBUD AND DAVID SALTMAN

Abstract. In this paper we extend work of Gerstenhaber [5], Kostant [9],
Kraft-Procesi {10], Tanisaki [15], and others on orbit closures in the nilpo-
tent cone of matrices by studying varieties of square matrices defined by
conditions on the ranks of powers of the matrices, or more generally on the
ranks of polynomial functions of them. We show that the irreducible com-
ponents of such varieties are always Gorenstein with rational singularities
(in particular they are normal). We compute their tangent spaces, and also
their imits under deformations of the defining polynomial functions. We
also study generators for the ideals of such varieties, and we compute the
singular loci of the hypersurfaces in the space of n X n matrices given by
the vanishing of a single coefficient of the characteristic polynomial.



Flatness

In the last section we saw that if » is a rank function, then
X, :={A € End(V)|rank AF < r(k)}red

1s a normal variety. In this section we will prove that it is in fact Gorenstein
with rational singularities. We will also show that it fits into a flat family
over A™ of normal varieties, whose fiber over a point (Ay,..., A, ) such that
the \; are all distinct 1s

Xriag,on, =14 € End(V)|corank(A—A;)) > r(i —1)—r(2),2 = 1,...,m}.



Flatness

THEOREM 2.1.

i) X, w is smooth over W and irreducible, of dimension n?—3".a;(r)*+
dim W, with trivial canonical bundle, while 7, is proper and bira-

tional, with
R'71.0x, w =0 fori > 0.

i1) X, w is normal, so that X, w = X,',,W, X, w is a rational resolution
of singularities of X, w, and X, w is Gorenstein.
iii) X, w is the restriction of X, am to W, and it is flat over w.



GT patterns

We shall reformulate Theorem 4.1 in terms of generalized Gelfand-Tsetlin pattemns
which will be defined separately for each type. First we recall familiar Gelfand-Tsetlin
patterns.

A GT-pattem (or gl -pattern ) is anarray A = (X;) (1 <1< j < 1) of nonnega-
tive integers A, satisfying A, . | > A, > A, forall 1 <4< j < r. Itisusually
drawn as follows:

The vector A = (X{y,A15,---,7;,) € Z7 will be called the highest weight of A ,
and the weight 8= (3,,...,8,) of A isdefined by B, = |\;| — |\, |, where || =
Mit A Tt A Mg =0.

i+1



